
Computer graphics III –
Rendering equation and its
solution

Jaroslav Křivánek, MFF UK

Jaroslav.Krivanek@mff.cuni.cz

mailto:Jaroslav.Krivanek@mff.cuni.cz

Goal: Global illumination (GI)

2

Direct illumination

Review: Reflection equation

CG III (NPGR010) - J. Křivánek

𝐿refl(𝑥, 𝜔out) = න

𝐻(𝐱)

𝐿in(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

◼ If the shading point x itself is on an emitting surface
(i.e. if x is on a light source):

Review: Reflection equation

𝐿out(𝑥, 𝜔out) = 𝐿e 𝑥, 𝜔out + 𝐿refl(𝑥, 𝜔out)

Total outgoing radiance

Emitted radiance

Reflected radiance
(previous slide)

CG III (NPGR010) - J. Křivánek

From local reflection to global light
transport

◼ Where does the incoming radiance Lin(x, win) come from,
really?

❑ From other places in the scene!

𝐿in(𝑥, 𝜔in) = 𝐿out(ray(𝑥, 𝜔in), −𝜔in)

Ray casting function

CG III (NPGR010) - J. Křivánek

ray(𝑥, 𝜔in)

𝑥

𝐿out(ray(𝑥, 𝜔in), −𝜔in)

𝐿in(𝑥, 𝜔in)

=

From local reflection to global light
transport

◼ Plug for Lin into the reflection equation

◼ Incoming radiance Lin drops out

◼ Outgoing radiance Lout at x is described in terms of Lout at
other points in the scene

CG III (NPGR010) - J. Křivánek

𝐿out 𝑥, 𝜔out = 𝐿e 𝑥, 𝜔out +

,𝐻(𝐱)𝐿out(ray(𝑥׬ 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

Rendering equation

◼ Removed the subscript “out” from the outgoing radiance
for brevity

◼ The RE describes the steady state = energy balance in
the scene

◼ Rendering = calculate L(x, wout) for all points visible
through pixels, such that it fulfils the rendering equation

CG III (NPGR010) - J. Křivánek

𝐿 𝑥, 𝜔out = 𝐿refl 𝑥, 𝜔out +

,𝐻(𝐱)𝐿(ray(𝑥׬ 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

◼ Reflection equation

❑ Describes local light reflection at a single point

❑ Integral that can be used to calculate the outgoing
radiance if we know the incoming radiance

◼ Rendering equation

❑ Condition on the global distribution of light in scene

❑ Integral equation – unknown quantity L on both sides

Reflection equation vs.
Rendering equation

Similar form – different meaning

CG III (NPGR010) - J. Křivánek

Rendering Equation – Kajiya 1986

CG III (NPGR010) - J. Křivánek

Path tracing sketch

Recursive unwinding of the RE

◼ To calculate L(x, wout), we need to calculate
L(ray(x, win), - win) for all directions win around x.

◼ At each intersected point, we need to do the same
recursively.

CG III (NPGR010) - J. Křivánek

Path tracing, v. 0.1

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (y, –ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

return estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf

CG III (NPGR010) - J. Křivánek

◼ Let’s now argue more rigorously why the recursive path
tracing actually solves the rendering equation…

CG III (NPGR010) - J. Křivánek

The operator form of the RE

General form the Fredholm integral equation of the 2nd kind

Rendering equation:

𝑓 𝑥 = 𝑔 𝑔 +න𝑓 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥′

RE is a Fredhom integral equation of
the 2nd kind

𝐿(𝐱, 𝜔o) = 𝐿e(𝐱, 𝜔o) + න

𝐻(𝐱)

𝐿(r(𝐱, 𝜔i), −𝜔i) ⋅ 𝑓𝑟(𝐱, 𝜔i → 𝜔o) ⋅ cos 𝜃i d𝜔i

unknown
function

known
functions

equation
“kernel”

CG III (NPGR010) - J. Křivánek

Linear operators

◼ Linear operators act on functions

❑ (as matrices act on vectors)

◼ The operator is linear if the “acting” is a linear operation

◼ Examples of linear operators

CG III (NPGR010) - J. Křivánek

ℎ 𝑥 = (𝑇 ∘ 𝑓)(𝑥)

𝐿 ∘ 𝑎𝑓 + 𝑏𝑔 = 𝑎 𝐿 ∘ 𝑓 + 𝑏(𝐿 ∘ 𝑔)

𝐾 ∘ 𝑓 𝑥 ≡ න𝑘 𝑥, 𝑥′ 𝑓 𝑥′ 𝑑𝑥′

𝐷 ∘ 𝑓 𝑥 ≡
𝜕𝑓

𝜕𝑥
(𝑥)

Transport operator

(𝑇 ∘ 𝐿)(𝑥, 𝜔out) ≡ න
𝐻(𝐱)

𝐿(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

◼ Rendering equation

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

CG III (NPGR010) - J. Křivánek

Solution of the RE in the operator
form

◼ Rendering equation

◼ Formal solution

◼ unusable in practice – the inverse cannot be
explicitly calculated

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

(𝐼 − 𝑇) ∘ 𝐿 = 𝐿e

𝐿 = (𝐼 − 𝑇)−1 ∘ 𝐿e

CG III (NPGR010) - J. Křivánek

Expansion of the rendering equation

◼ Recursive substitution L

◼ n-fold repetition yields the Neumann series

CG III (NPGR010) - J. Křivánek

𝐿 = 𝐿e + 𝑇𝐿

= 𝐿e + 𝑇 𝐿e + 𝑇𝐿

= 𝐿e + 𝑇𝐿e + 𝑇2𝐿

𝐿 =෍

𝑖=0

𝑛

𝑇𝑖𝐿e + 𝑇𝑛+1𝐿

Expansion of the rendering equation

◼ If T is a contraction (tj. 𝑇 < 1, which holds for the
RE), then

◼ Solution of the rendering equation is then given by

CG III (NPGR010) - J. Křivánek

lim
𝑛→∞

𝑇𝑛+1 𝐿 = 0

𝐿 =෍

𝑖=0

∞

𝑇𝑖𝐿e

A different derivation of the Neumann
series

◼ Formal solution of the rendering equation

◼ Proposition

◼ Proof

(𝐼 − 𝑇)−1 = 𝐼 + 𝑇 + 𝑇2+. . .

(𝐼 − 𝑇) ∘ (𝐼 − 𝑇)−1 = (𝐼 − 𝑇) ∘ (𝐼 + 𝑇 + 𝑇2+. . .)

= (𝐼 + 𝑇 + 𝑇2+. . .) − (𝑇 + 𝑇2 + 𝑇3+. . .)

= 𝐼

𝐿 = (𝐼 − 𝑇)−1 ∘ 𝐿e

CG III (NPGR010) - J. Křivánek

◼ Solution: Neumann series

Rendering equation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e +…

CG III (NPGR010) - J. Křivánek

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

Progressive approximation

e
L

e
L

eLT  eLTT  eLTTT 

ee LTL +
e

2

ee LTTLL ++ e

3

e ... LTL ++

CG III (NPGR010) - J. Křivánek

Progressive approximation

◼ Each application of T corresponds to one step of
reflection & light propagation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e+. . .

emission

direct
illumination

one-bounce
indirect illumination

two-bounce
indirect illumination

OpenGL shading
CG III (NPGR010) - J. Křivánek

Contractivity of T

◼ Holds for all physically correct models

❑ Follows from the conservation of energy

◼ It means that repetitive application of the operator lower
the remaining light energy (makes sense, since
reflection/refraction cannot create energy)

◼ Scenes with white or highly specular surfaces

❑ reflectivity close to 1

❑ to achieve convergence, we need to simulate more bounces
of light

CG III (NPGR010) - J. Křivánek

Alright, so what have we achieved?

◼ We have replaced an integral equation by a sum of
simple integrals

◼ Great, we know how to calculate integrals numerically
(the Monte Carlo method), which means that we know
how to solve the RE, and that means that we can render
images, yay!

◼ Recursive application to T corresponds to the recursive
ray tracing from the camera

CG III (NPGR010) - J. Křivánek

𝐿 = 𝐿e + 𝑇 ∘ 𝐿 𝐿 =෍

𝑖=0

∞

𝑇𝑖𝐿e

Rendering
equation

Solution through the
Neumann series

Paths vs. recursion: Same thing,
depends on how we look at it

◼ Paths in a high-dimensional path space

◼ Recursive solution of a series of nested (hemi)spherical
integrals:

CG III (NPGR010) - J. Křivánek

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e+. . .

𝐿 = 𝐿e + 𝑇(𝐿e + 𝑇(𝐿e + 𝑇(𝐿e+. . .

Recursive unwinding of the RE

◼ To calculate L(x, wout), we need to calculate
L(ray(x, win), - win) for all directions win around x.

◼ At each intersected point, we need to do the same
recursively.

CG III (NPGR010) - J. Křivánek

We’ve seen this already, right?
But unlike at the beginning of
the lecture, by now we know this
actually solves the RE.

Path tracing, v. 2012, Arnold Renderer

CG III (NPGR010) - J. Křivánek

© 2012 Columbia Pictures Industries, Inc. All Rights Reserved.

CG III (NPGR010) - J. Křivánek

Angular and Area form of the
rendering equation

Angular integral form of the RE

◼ Integral over the hemisphere in incoming directions

CG III (NPGR010) - J. Křivánek

𝐿 𝑥, 𝜔out = 𝐿refl 𝑥, 𝜔out

+ න

𝐻(𝐱)

𝐿(ray(𝑥, 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

Going from angular to area form

◼ Change-of-variables applied to the angular form

CG III (NPGR010) - J. Křivánek

2

cos
dd

r
A


w =

Area integral form of the RE

◼ Area form

❑ Integral over the scene surface

𝐿(𝑥, 𝜔out) = 𝐿e(𝑥, 𝜔out)

+ න

𝑀

𝐿(𝑦 → 𝑥) ⋅ 𝑓𝑟(𝑦 → 𝑥 → 𝜔out) ⋅ 𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦) d𝐴𝑦

𝐺(𝑥 ↔ 𝑦) =
cos 𝜃𝑥 ⋅ cos 𝜃𝑦

𝑥 − 𝑦 2

visibility
1 … y visible from x
0 … otherwise

geometry term
scene surface

CG III (NPGR010) - J. Křivánek

Angular integral form

◼ Sum up radiance contributions from all directions

◼ For each direction, find the nearest surface by ray tracing

◼ Implementation in stochastic path tracing:

❑ For a given x, generate random direction(s), for each find
the nearest intersection, return the outgoing radiance at
that intersection and multiply it with the cosine-weighted
BRDF.

CG III (NPGR010) - J. Křivánek

Area integral form

◼ Sum up contributions from all other points on the scene
surface

❑ Contribution added only if visible

◼ Implementation in stochastic path tracing:

❑ Generate randomly point y on scene geometry (e.g. on a
light source). Test visibility between x and y. If mutually
visible, add the outgoing radiance at ymodulated by the
geometry factor.

◼ Typical use: direct illumination calculation for area
light sources

CG III (NPGR010) - J. Křivánek

Most rendering algorithms =
(approximate) solution of the RE

◼ Local illumination (OpenGL)

❑ Only point sources, integral becomes a sum

❑ Does not calculate equilibrium radiance, is not really a
solution of the RE

◼ Finite element methods (radiosity) [Goral, ’84]

❑ Discretize scene surface (finite elements)

❑ Disregard directionality of reflections: everything is
assumed to be diffuse

❑ Cannot reproduce glossy reflections

CG III (NPGR010) - J. Křivánek

Most rendering algorithms =
(approximate) solution of the RE

◼ Ray tracing [Whitted, ’80]

❑ Direct illumination on diffuse and glossy surfaces due to
point sources

❑ Indirect illumination only on ideal mirror reflection /
refractions

❑ Cannot calculate indirect illumination on diffuse and glossy
scenes, soft shadows etc. …

◼ Distributed ray tracing [Cook, ’84]

❑ Estimate the local reflection using the MC method

❑ Can calculate soft shadows, glossy reflections, camera
defocus blur, etc.

CG III (NPGR010) - J. Křivánek

Most rendering algorithms =
(approximate) solution of the RE

◼ Path tracing [Kajiya, ’86]

❑ True solution of the RE via the Monte Carlo method

❑ Tracing of random paths (random walks) from the camera

❑ Can calculate indirect illumination of higher order

CG III (NPGR010) - J. Křivánek

From the rendering equation
to finite element radiosity

(Optional material)

From the RE to radiosity

◼ Start from the area integral form of the RE

◼ The Radiosity method– assumptions

❑ Only diffuse surfaces (BRDF constant in win and wout)

❑ Radiosity (i.e. radiant exitance) is spatially constant (flat)
over the individual elements

CG III (NPGR010) - J. Křivánek

From the RE to radiosity

◼ Diffuse surfaces only

❑ The BRDF is constant in win and wout

❑ Outgoing radiance is independent of wout . It is equal
to radiosity B divided by p

𝐿(𝑥, 𝜔out) = 𝐿e(𝑥, 𝜔out) +
𝜌(𝑥)

𝜋
න

𝑀

𝐿(𝑦 → 𝑥) ⋅ 𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦) d𝐴𝑦

𝐵(𝑥) = 𝐵e(𝑥) + 𝜌(𝑥) ⋅ න

𝑀

𝐵(𝑦) ⋅
𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦)

𝜋
d𝐴𝑦

𝐺′(𝑥 ↔ 𝑦)

CG III (NPGR010) - J. Křivánek

From the RE to radiosity

◼ Spatially constant (flat) radiosity B of the contributing
surface elements

𝐵(𝑥) = 𝐵e(𝑥) + 𝜌(𝑥) ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅ න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗

Radiosity of the j-th element

Geometry factor between
surface element j and point x

CG III (NPGR010) - J. Křivánek

From the RE to radiosity

◼ Spatially constant (flat) radiosity of the receiving
surface element i:

❑ Average radiosity over the element

𝐵𝑖 =
1

𝐴𝑖
න

𝐴𝑖

𝐵(𝑥) d𝐴𝑖 =

= 𝐵e,𝑖 + 𝜌𝑖 ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅
1

𝐴𝑖
න

𝐴𝑖

න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗 d𝐴𝑥,𝑖

𝐹𝑖𝑗 … form factor

jdA

i

j

idA

jA

iA

CG III (NPGR010) - J. Křivánek

Classic radiosity equation

◼ System of linear equations

◼ Form factors

◼ Conclusion: the radiosity method is nothing but a way
to solve the RE under a specific set of assumptions

𝐵𝑖 = 𝐵e,𝑖 + 𝜌𝑖 ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅ 𝐹𝑖𝑗

𝐹𝑖𝑗 =
1

𝐴𝑖
න

𝐴𝑖

න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗 d𝐴𝑥,𝑖

CG III (NPGR010) - J. Křivánek

Radiosity method

◼ Classical radiosity

1. Form facto calculation (Monte Carlo, hemicube, …)

2. Solve the linear system (Gathering, Shooting, …)

◼ Stochastic radiosity

❑ Avoids explicit calculation of form factors

❑ Metoda Monte Carlo

◼ Radiosity is not practical, not used anymore

❑ Scene subdivision -> sensitive to the quality of the geometry
model (but in reality, models are always broken)

❑ High memory consumption, complex implementation

CG III (NPGR010) - J. Křivánek

