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Goal: Global illumination (GI)

2

Direct illumination



Review: Reflection equation
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𝐿refl(𝑥, 𝜔out) = න

𝐻(𝐱)

𝐿in(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in



◼ If the shading point x itself is on an emitting surface 
(i.e. if x is on a light source):

Review: Reflection equation

𝐿out(𝑥, 𝜔out) = 𝐿e 𝑥, 𝜔out + 𝐿refl(𝑥, 𝜔out)

Total outgoing radiance

Emitted radiance

Reflected radiance
(previous slide)
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From local reflection to global light 
transport

◼ Where does the incoming radiance Lin(x, win) come from, 
really?

❑ From other places in the scene!

𝐿in(𝑥, 𝜔in) = 𝐿out(ray(𝑥, 𝜔in), −𝜔in)

Ray casting function
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ray(𝑥, 𝜔in)

𝑥

𝐿out(ray(𝑥, 𝜔in), −𝜔in)

𝐿in(𝑥, 𝜔in)

=



From local reflection to global light 
transport

◼ Plug for Lin into the reflection equation

◼ Incoming radiance Lin drops out

◼ Outgoing radiance Lout at x is described in terms of Lout at 
other points in the scene
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𝐿out 𝑥, 𝜔out = 𝐿e 𝑥, 𝜔out +

,𝐻(𝐱)𝐿out(ray(𝑥׬ 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in



Rendering equation

◼ Removed the subscript “out” from the outgoing radiance 
for brevity

◼ The RE describes the steady state = energy balance in 
the scene

◼ Rendering = calculate L(x, wout) for all points visible 
through pixels, such that it fulfils the rendering equation
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𝐿 𝑥, 𝜔out = 𝐿refl 𝑥, 𝜔out +

,𝐻(𝐱)𝐿(ray(𝑥׬ 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in



◼ Reflection equation

❑ Describes local light reflection at a single point

❑ Integral that can be used to calculate the outgoing 
radiance if we know the incoming radiance

◼ Rendering equation

❑ Condition on the global distribution of light in scene

❑ Integral equation – unknown quantity L on both sides

Reflection equation vs.  
Rendering equation

Similar form – different meaning
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Rendering Equation – Kajiya 1986
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Path tracing sketch



Recursive unwinding of the RE

◼ To calculate L(x, wout), we need to calculate 
L(ray(x, win), - win) for all directions win around x.

◼ At each intersected point, we need to do the same 
recursively.
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Path tracing, v. 0.1

estimateLin (x, ω): // radiance incident at x from direction ω

y = findNearestIntersection(x, ω)

if (no intersection)

return backgroud.getLe (y, –ω) // emitted radiance from envmap

else

return getLe (y, –ω) + // emitted radiance (if y is on a light)

estimateLrefl (y, –ω)// reflected radiance

estimateLrefl(x, ωout):

[ωin , pdf] = genRandomDir(x, ωout); // e.g. BRDF imp. sampling

return estimateLin(x, ωin) * brdf(x, ωin, ωout) * dot(nx, ωin) / pdf
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◼ Let’s now argue more rigorously why the recursive path 
tracing actually solves the rendering equation…
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The operator form of the RE



General form the Fredholm integral equation of the 2nd kind

Rendering equation:

𝑓 𝑥 = 𝑔 𝑔 +න𝑓 𝑥′ 𝑘 𝑥, 𝑥′ 𝑑𝑥′

RE is a Fredhom integral equation of 
the 2nd kind

𝐿(𝐱, 𝜔o) = 𝐿e(𝐱, 𝜔o) + න

𝐻(𝐱)

𝐿(r(𝐱, 𝜔i), −𝜔i) ⋅ 𝑓𝑟(𝐱, 𝜔i → 𝜔o) ⋅ cos 𝜃i d𝜔i

unknown
function

known 
functions

equation
“kernel”
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Linear operators

◼ Linear operators act on functions

❑ (as matrices act on vectors)

◼ The operator is linear if the “acting” is a linear operation

◼ Examples of linear operators
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ℎ 𝑥 = (𝑇 ∘ 𝑓)(𝑥)

𝐿 ∘ 𝑎𝑓 + 𝑏𝑔 = 𝑎 𝐿 ∘ 𝑓 + 𝑏(𝐿 ∘ 𝑔)

𝐾 ∘ 𝑓 𝑥 ≡ න𝑘 𝑥, 𝑥′ 𝑓 𝑥′ 𝑑𝑥′

𝐷 ∘ 𝑓 𝑥 ≡
𝜕𝑓

𝜕𝑥
(𝑥)



Transport operator

(𝑇 ∘ 𝐿)(𝑥, 𝜔out) ≡ න
𝐻(𝐱)

𝐿(𝑥, 𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in

◼ Rendering equation

𝐿 = 𝐿e + 𝑇 ∘ 𝐿
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Solution of the RE in the operator 
form

◼ Rendering equation

◼ Formal solution

◼ unusable in practice – the inverse cannot be 
explicitly calculated

𝐿 = 𝐿e + 𝑇 ∘ 𝐿

(𝐼 − 𝑇) ∘ 𝐿 = 𝐿e

𝐿 = (𝐼 − 𝑇)−1 ∘ 𝐿e
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Expansion of the rendering equation

◼ Recursive substitution L

◼ n-fold repetition yields the Neumann series
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𝐿 = 𝐿e + 𝑇𝐿

= 𝐿e + 𝑇 𝐿e + 𝑇𝐿

= 𝐿e + 𝑇𝐿e + 𝑇2𝐿

𝐿 =෍

𝑖=0

𝑛

𝑇𝑖𝐿e + 𝑇𝑛+1𝐿



Expansion of the rendering equation

◼ If T is a contraction (tj. 𝑇 < 1, which holds for the 
RE), then

◼ Solution of the rendering equation is then given by 
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lim
𝑛→∞

𝑇𝑛+1 𝐿 = 0

𝐿 =෍

𝑖=0

∞

𝑇𝑖𝐿e



A different derivation of the Neumann 
series

◼ Formal solution of the rendering equation

◼ Proposition

◼ Proof

(𝐼 − 𝑇)−1 = 𝐼 + 𝑇 + 𝑇2+. . .

(𝐼 − 𝑇) ∘ (𝐼 − 𝑇)−1 = (𝐼 − 𝑇) ∘ (𝐼 + 𝑇 + 𝑇2+. . . )

= (𝐼 + 𝑇 + 𝑇2+. . . ) − (𝑇 + 𝑇2 + 𝑇3+. . . )

= 𝐼

𝐿 = (𝐼 − 𝑇)−1 ∘ 𝐿e
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◼ Solution: Neumann series

Rendering equation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e +…
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𝐿 = 𝐿e + 𝑇 ∘ 𝐿

𝐿 = 𝐿e + 𝑇 ∘ 𝐿



Progressive approximation

e
L

e
L

eLT  eLTT  eLTTT 

ee LTL +
e

2

ee LTTLL ++ e

3

e ... LTL ++
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Progressive approximation

◼ Each application of T corresponds to one step of 
reflection & light propagation

𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e+. . .

emission

direct
illumination

one-bounce
indirect illumination

two-bounce 
indirect illumination

OpenGL shading
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Contractivity of T

◼ Holds for all physically correct models

❑ Follows from the conservation of energy

◼ It means that repetitive application of the operator lower 
the remaining light energy (makes sense, since 
reflection/refraction cannot create energy)

◼ Scenes with white or highly specular surfaces

❑ reflectivity close to 1

❑ to achieve convergence, we need to simulate more bounces 
of light
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Alright, so what have we achieved?

◼ We have replaced an integral equation by a sum of 
simple integrals

◼ Great, we know how to calculate integrals numerically
(the Monte Carlo method), which means that we know 
how to solve the RE, and that means that we can render 
images, yay!

◼ Recursive application to T corresponds to the recursive 
ray tracing from the camera
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𝐿 = 𝐿e + 𝑇 ∘ 𝐿 𝐿 =෍

𝑖=0

∞

𝑇𝑖𝐿e

Rendering 
equation

Solution through the 
Neumann series



Paths vs. recursion: Same thing, 
depends on how we look at it

◼ Paths in a high-dimensional path space

◼ Recursive solution of a series of nested (hemi)spherical 
integrals:
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𝐿 = 𝐿e + 𝑇𝐿e + 𝑇2𝐿e + 𝑇3𝐿e+. . .

𝐿 = 𝐿e + 𝑇(𝐿e + 𝑇(𝐿e + 𝑇(𝐿e+. . .



Recursive unwinding of the RE

◼ To calculate L(x, wout), we need to calculate 
L(ray(x, win), - win) for all directions win around x.

◼ At each intersected point, we need to do the same 
recursively.
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We’ve seen this already, right? 
But unlike at the beginning of 
the lecture, by now we know this
actually solves the RE.



Path tracing, v. 2012, Arnold Renderer
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© 2012 Columbia Pictures Industries, Inc. All Rights Reserved.
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Angular and Area form of the 
rendering equation



Angular integral form of the RE

◼ Integral over the hemisphere in incoming directions
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𝐿 𝑥, 𝜔out = 𝐿refl 𝑥, 𝜔out

+ න

𝐻(𝐱)

𝐿(ray(𝑥, 𝜔in), −𝜔in) ⋅ 𝑓𝑟(𝑥, 𝜔in → 𝜔out) ⋅ cos 𝜃in d𝜔in



Going from angular to area form

◼ Change-of-variables applied to the angular form

CG III (NPGR010) - J. Křivánek

2

cos
dd

r
A


w =



Area integral form of the RE

◼ Area form

❑ Integral over the scene surface

𝐿(𝑥, 𝜔out) = 𝐿e(𝑥, 𝜔out)

+ න

𝑀

𝐿(𝑦 → 𝑥) ⋅ 𝑓𝑟(𝑦 → 𝑥 → 𝜔out) ⋅ 𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦) d𝐴𝑦

𝐺(𝑥 ↔ 𝑦) =
cos 𝜃𝑥 ⋅ cos 𝜃𝑦

𝑥 − 𝑦 2

visibility
1 … y visible from x
0 … otherwise

geometry term
scene surface
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Angular integral form

◼ Sum up radiance contributions from all directions

◼ For each direction, find the nearest surface by ray tracing

◼ Implementation in stochastic path tracing:

❑ For a given x, generate random direction(s), for each find 
the nearest intersection, return the outgoing radiance at 
that intersection and multiply it with the cosine-weighted 
BRDF.
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Area integral form

◼ Sum up contributions from all other points on the scene 
surface

❑ Contribution added only if visible

◼ Implementation in stochastic path tracing:

❑ Generate randomly point y on scene geometry (e.g. on a 
light source). Test visibility between x and y. If mutually 
visible, add the outgoing radiance at ymodulated by the 
geometry factor.

◼ Typical use: direct illumination calculation for area 
light sources
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Most rendering algorithms = 
(approximate) solution of the RE 

◼ Local illumination (OpenGL)

❑ Only point sources, integral becomes a sum

❑ Does not calculate equilibrium radiance, is not really a 
solution of the RE

◼ Finite element methods (radiosity) [Goral, ’84]

❑ Discretize scene surface (finite elements)

❑ Disregard directionality of reflections: everything is 
assumed to be diffuse

❑ Cannot reproduce glossy reflections

CG III (NPGR010) - J. Křivánek



Most rendering algorithms = 
(approximate) solution of the RE 

◼ Ray tracing [Whitted, ’80]

❑ Direct illumination on diffuse and glossy surfaces due to 
point sources

❑ Indirect illumination only on ideal mirror reflection / 
refractions

❑ Cannot calculate indirect illumination on diffuse and glossy 
scenes, soft shadows etc. …

◼ Distributed ray tracing [Cook, ’84]

❑ Estimate the local reflection using the MC method

❑ Can calculate soft shadows, glossy reflections, camera 
defocus blur, etc.
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Most rendering algorithms = 
(approximate) solution of the RE 

◼ Path tracing [Kajiya, ’86]

❑ True solution of the RE via the Monte Carlo method

❑ Tracing of random paths (random walks) from the camera

❑ Can calculate indirect illumination of higher order
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From the rendering equation 
to finite element radiosity

(Optional material)



From the RE to radiosity

◼ Start from the area integral form of the RE

◼ The Radiosity method– assumptions

❑ Only diffuse surfaces (BRDF constant in win and wout)

❑ Radiosity (i.e. radiant exitance) is spatially constant (flat) 
over  the individual elements
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From the RE to radiosity

◼ Diffuse surfaces only

❑ The BRDF is constant in win and wout

❑ Outgoing radiance is independent of wout . It is equal 
to radiosity B divided by p

𝐿(𝑥, 𝜔out) = 𝐿e(𝑥, 𝜔out) +
𝜌(𝑥)

𝜋
න

𝑀

𝐿(𝑦 → 𝑥) ⋅ 𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦) d𝐴𝑦

𝐵(𝑥) = 𝐵e(𝑥) + 𝜌(𝑥) ⋅ න

𝑀

𝐵(𝑦) ⋅
𝐺(𝑥 ↔ 𝑦) ⋅ 𝑉(𝑥 ↔ 𝑦)

𝜋
d𝐴𝑦

𝐺′(𝑥 ↔ 𝑦)
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From the RE to radiosity

◼ Spatially constant (flat) radiosity B of the contributing 
surface elements

𝐵(𝑥) = 𝐵e(𝑥) + 𝜌(𝑥) ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅ න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗

Radiosity of the j-th element

Geometry factor between
surface element j and point x
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From the RE to radiosity

◼ Spatially constant (flat) radiosity of the receiving 
surface element i:

❑ Average radiosity over the element

𝐵𝑖 =
1

𝐴𝑖
න

𝐴𝑖

𝐵(𝑥) d𝐴𝑖 =

= 𝐵e,𝑖 + 𝜌𝑖 ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅
1

𝐴𝑖
න

𝐴𝑖

න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗 d𝐴𝑥,𝑖

𝐹𝑖𝑗 … form factor

jdA

i

j

idA

jA

iA
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Classic radiosity equation

◼ System of linear equations

◼ Form factors

◼ Conclusion: the radiosity method is nothing but a way 
to solve the RE under a specific set of assumptions

𝐵𝑖 = 𝐵e,𝑖 + 𝜌𝑖 ⋅෍

𝑗=1

𝑁

𝐵𝑗 ⋅ 𝐹𝑖𝑗

𝐹𝑖𝑗 =
1

𝐴𝑖
න

𝐴𝑖

න

𝐴𝑗

𝐺′(𝑥 ↔ 𝑦) d𝐴𝑦,𝑗 d𝐴𝑥,𝑖
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Radiosity method

◼ Classical radiosity

1. Form facto calculation (Monte Carlo, hemicube, …)

2. Solve the linear system (Gathering, Shooting, …)

◼ Stochastic radiosity

❑ Avoids explicit calculation of form factors

❑ Metoda Monte Carlo

◼ Radiosity is not practical, not used anymore

❑ Scene subdivision -> sensitive to the quality of the geometry 
model (but in reality, models are always broken)

❑ High memory consumption, complex implementation
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